

LaserForm AlSi10Mg (A)

AlSi10Mg (A) is fine-tuned for use with DMP Flex 350, DMP Factory 350, DMP Flex 350 Dual, DMP Factory 350 Dual and DMP Factory 500 printers producing industrial parts with a combination of good mechanical properties and good thermal conductivity*.

LaserForm AlSi10Mg (A) is formulated and fine-tuned to deliver high part quality and consistent part properties^{*}. The print parameter database that 3D Systems provides together with the material has been extensively developed, tested and optimized in 3D Systems' part production facilities that hold the unique expertise of printing more than 1,000,000 challenging metal production parts in various materials year over year. Based on a multitude of test samples, the properties listed below provide high confidence to the user in terms of job-to-job and machine-to-machine repeatability. Using the LaserForm material enables the user to experience consistent and reliable part quality.

Material Description

AlSi10Mg combines silicon and magnesium as alloying elements, which results in a significant increase in strength and hardness compared to other aluminum alloys. Due to the very rapid melting and solidification during Direct Metal Printing, LaserForm AlSi10Mg (A) in as-printed condition shows fine microstructure and high strengths.

In the aerospace and automotive industry, LaserForm AlSi10Mg (A) is used for its light weight. Both innovative approaches to mold design and specific heat exchanger applications make use of the high thermal conductivity of this alloy.

CLASSIFICATION:

Parts built with LaserForm AlSi10Mg (A) have a chemical composition that complies with EN AC-43000 and ASTM F3318.

Mechanical Properties

Mechanical i Toperties								
DMP FLEX 350, DMP FACTORY 350, DMP FLEX 350 DUAL, DMP FACTORY 350 DUAL – LT	TEST	METRIC			U.S.			
30 ^{1,4,5}	METHOD	NHT	SR1	SR2	NHT	SR1	SR2	
Ultimate tensile strength (MPa ksi) Horizontal direction - XY Vertical direction - Z	ASTM E8	460 ± 20 465 ± 30	290 ± 15 300 ± 15	400 ± 20 425 ± 20	67 ± 3 67 ± 5	42 ± 3 43 ± 3	58 ± 3 61 ± 3	
Yield strength Rp0.2% (MPa ksi) Horizontal direction - XY Vertical direction - Z		275 ± 20 250 ± 25	185 ± 15 185 ± 15	270 ± 20 250 ± 10	39 ± 3 36 ± 4	27 ± 3 27 ± 3	39 ± 3 36 ± 2	
Plastic elongation (%) Horizontal direction - XY Vertical direction - Z		12.5 ± 5.1 7.9 ± 4.1	16.7 ± 3.3 15.7 ± 2.8	10.1 ± 3.0 5.7 +3.4	12.5 ± 5.1 7.9 ± 4.1	16.7 ± 3.3 15.7 ± 2.8	10.1 ± 3.0 5.7 ± 3.4	
DMP FLEX 350, DMP FACTORY 350, DMP FLEX 350	TEST		METRIC			U.S.		
DUAL, DMP FACTORY 350 DUAL – LT 60 ^{2, 4, 5}	METHOD	NHT	SR1	SR2	NHT	SR1	SR2	
Ultimate tensile strength (MPa ksi) Horizontal direction - XY Vertical direction - Z		435 ± 30 425 ± 55	285 ± 15 290 ± 15	390 ± 25 400 ± 40	63 ± 5 62 ± 8	41 ± 3 42 ± 3	57 ± 4 58 ± 6	
Yield strength Rp0.2% (MPa ksi) Horizontal direction - XY Vertical direction - Z	ASTM E8	250 ±25 225 ± 20	170 ± 15 160 ± 20	260 ± 30 235 ± 10	36 ± 4 33 ± 3	25 ± 3 23 ± 3	37 ± 5 34 ± 2	
Plastic elongation (%) Horizontal direction - XY Vertical direction - Z		9.5 ± 5.2 7.2 ± 4.9	13.9 ± 3.0 12.9 ± 4.8	8.4 ± 3.1 5.3 ± 2.8	9.5 ± 5.2 7.2 ± 4.9	13.9 ± 3.0 12.9 ± 4.8	8.4 ± 3.1 5.3 ± 2.8	
	TEST		METRIC		U.S.			
DMP FACTORY 500 - LT 60 ^{3, 4, 5}	METHOD	NHT	SR1	SR2	NHT	SR1	SR2	
Ultimate tensile strength (MPa ksi) Horizontal direction - XY Vertical direction - Z	ASTM E8	NA	290 ± 20 300 ± 20	405 ± 20 420 +20/-60	NA	42 ± 3 44 ± 3	59 ± 3 61 +3/-9	
Yield strength Rp0.2% (MPa ksi) Horizontal direction - XY Vertical direction - Z		NA	170 ± 20 180 ± 20	270 +15/-30 250 ± 20	NA	25 ± 3 26 ± 3	39 +2/-4 36 ± 3	
Plastic elongation (%) Horizontal direction - XY Vertical direction - Z		NA	17.5 ± 4.9 13.3 ± 5.7	9.4 ± 5.5 5.8 ± 3.4	NA	17.5 ± 4.9 13.3 ± 5.7	9.4 ± 5.5 5.8 ± 3.4	

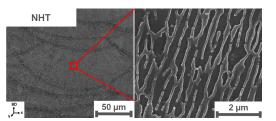
High productive parameter set using a layer thickness of 90 µm (LT90) is also available on DMP Flex 350, DMP Factory 350, DMP Flex 350 Dual and DMP Factory 350 Dual depending on requirements. Typical application fields for LT90 are Electrical motor casing, pump casing, heat exchangers and automotive prototyping.

* Also applicable for ProX[®] DMP 320, former 3D Systems printer

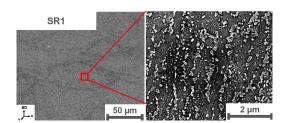
¹ Parts manufactured with standard parameters and protocols on a ProX DMP 320,

DMP Flex and Factory 350, DMP Flex 350 Dual, Config B, using layer thickness 30 μm (LT30) 2 Parts manufactured with standard parameters and protocols on a ProX DMP 320,

DMP Flex and Factory 350, DMP Flex 350 Dual, Config B, using layer thickness 60 μm (LT60)

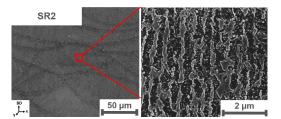

 3 Parts manufactured with standard parameters and protocols on a DMP Factory 500, using layer thickness 60 μm (LT60)

 4 NHT is non-heat-treated sample condition; SR1 is a heat treatment at 285 °C for 2 h; SR2 is a heat treatment at 190 °C for 6h. Values based on average and 95% tolerance interval with 95% confidence


⁵ Tested according to ASTM E8 using round tensile test specimen type 4

Printed Part Properties⁶

DENSITY	TEST METHOD	METRIC	U.S.
Theoretical density ⁷ (g/cm ³ lb/in ³)	Value from literature	2.68	0.097
Relative density (%), layer thickness 30 μm $^{1.8}$	Optical method	≥ 99.7	≥ 99.7
	(pixel count)	Typical 99.9	Typical 99.9
Relative density (%), layer thickness 60 μm $^{\rm 2.3,8}$	Optical method	≥ 99.5	≥ 99.5
	(pixel count)	Typical 99.8	Typical 99.8
Relative density (%), layer thickness 90 μm 14,8	Optical method	≥ 98.6	≥ 98.6
	(pixel count)	Typical 99.3	Typical 99.3
SURFACE ROUGHNESS R _a ^{9,10}	TEST METHOD	METRIC	U.S.
Vertical side surface (μm μin)	ISO 25178	Typically,	Typically,
Layer thickness 30 μm		around 8	around 315
Vertical side surface (µm µin)	ISO 25178	Typically,	Typically,
Layer thickness 60 µm		around 15	around 591
Vertical side surface (µm µin)	ISO 25178	Typically,	Typically,
Layer thickness 90 µm		around 15	around 591


Microstructure without heat treatment (NHT)

Microstructure after SR1

Thermal Properties

	CONDITION	METRIC			U.S.		
MEASUREMENT	CONDITION	NHT	SR1	SR2	NHT	SR1	SR2
Thermal conductivity ^{11,12} (W/(m.K) BTU·in/h·ft ² ·°F	at 20 °C / 68 °F	120-130	160-170	140-160	833-902	1110 -1180	971-1110
CTE - Coefficient of thermal expansion ⁷ (µm/(m.°C) µ inch/(inch . °F))	in the range of 20 to 100 °C	——— typical 20.9 ———			typical 11.6		
Melting range ⁷ (°C °F)		——typi	cal 557 -	596 ——	—— typi	cal 1035 - 1	105 ——

Microstructure after SR2

Electrical Properties^{12,13}

MEASUREMENT			METRIC			U.S.		
	CONDITION	NHT	SR1	SR2	NHT	SR1	SR2	
Electrical conductivity (10 ⁶ S/m)	ASTM B193 at 20°C / 68°F	17-18	22-24	20-22	17-18	22-24	20-22	

Chemical Composition

ELEMENT	% OF WEIGHT	ELEMENT	% OF WEIGHT
Al	Balance	Ni	≤0.05
Si	9.00-11.00	Zn	≤0.10
Mg	0.20-0.45	Pb	≤0.05
Fe	≤0.55	Sn	≤0.05
Cu	≤ 0.03	Ti	≤0.15
Mn	≤0.35	Other (each)	≤ 0.05

- ⁶ May deviate depending on specific part geometry
- 7 Values based on literature
- ⁸ Minimum values based on 95% tolerance interval with 95% confidence. Tested on specific 3DS density test coupons
- ⁹ Surface treatment performed with zirconia blasting medium at 2 bar
- ¹⁰ Vertical side surface measurement along the building direction
- ¹¹ Thermal conductivity values are calculated by the Wiedemann-Franz
- law using the respective electrical resistivity values ¹² Results are based on limited sample size, not statistically representative. Samples printed on a ProX DMP 320, Config B
- ¹³ Electrical resistivity measurements are based on four point contact method according to ASTM B193
- ¹⁴ Parts manufactured with standard parameters and protocols on a DMP Flex 350 Dual, Config B, using layer thickness 90 μm (LT90)

To confirm the suitability of this material for your specific application, please contact the 3D Systems Application Innovation Group (AIG): https://www.3dsystems.com/consulting/application-innovation-group

LASERFORM ALSI10MG (A) | MATERIAL DATASHEET | 3DS-10104C | 10-22

Warranty/Disclaimer: The performance characteristics of these products may vary according to product application, operating conditions, or with end use. 3D Systems makes no warranties of any type, express or implied, including, but not limited to, the warranties of merchantability or fitness for a particular use.

©2022 by 3D Systems, Inc. All rights reserved. Specifications subject to change without notice. 3D Systems, the 3D Systens logo and ProX are registered trademarks of 3D Systems, Inc.